Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
EMBO Mol Med ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565805

RESUMO

The emergence of drug-resistant Enterobacteriaceae carrying plasmid-mediated ß-lactamase genes has become a significant threat to public health. Organisms in the Enterobacteriaceae family containing New Delhi metallo-ß-lactamase­1 (NDM-1) and its variants, which are capable of hydrolyzing nearly all ß-lactam antibacterial agents, including carbapenems, are referred to as superbugs and distributed worldwide. Despite efforts over the past decade, the discovery of an NDM-1 inhibitor that can reach the clinic remains a challenge. Here, we identified oxidized glutathione (GSSG) as a metabolic biomarker for blaNDM-1 using a non-targeted metabolomics approach and demonstrated that GSSG supplementation could restore carbapenem susceptibility in Escherichia coli carrying blaNDM-1 in vitro and in vivo. We showed that exogenous GSSG promotes the bactericidal effects of carbapenems by interfering with intracellular redox homeostasis and inhibiting the expression of NDM-1 in drug-resistant E. coli. This study establishes a metabolomics-based strategy to potentiate metabolism-dependent antibiotic efficacy for the treatment of antibiotic-resistant bacteria.

2.
Food Chem ; 449: 139198, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38574526

RESUMO

The preparation of high specificity and affinity antibodies is challenging due to limited information on characteristic groups of haptens in traditional design strategy. In this study, we first predicted characteristic groups of flurogestone acetate (FGA) using quantitative analysis of molecular surface combined with atomic charge distribution. Subsequently, FGA haptens were rationally designed to expose these identified characteristic groups fully. As a result, seven monoclonal antibodies were obtained with satisfactory performance, exhibiting IC50 values from 0.17 to 0.45 µg/L and negligible cross-reactivities below 1% to other 18 hormones. The antibody recognition mechanism further confirmed hydrogen bonds and hydrophobic interactions involving predicted FGA characteristic groups and specific amino acids in the antibodies contributed to their high specificity and affinity. Finally, one selective and sensitive ic-ELISA was developed for FGA determination with a detection limit as low as 0.12 µg/L, providing an efficient tool for timely monitoring of FGA in goat milk samples.

3.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629492

RESUMO

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Assuntos
Infecções por Enterobacteriaceae , Enterobacteriaceae , Criança , Humanos , Animais , Suínos , Enterobacteriaceae/genética , Estudos Transversais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Galinhas , Escherichia coli/genética , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Klebsiella pneumoniae/genética , Plasmídeos
4.
J Hazard Mater ; 469: 133977, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492395

RESUMO

The immunogenicity of haptens determines the performance of the resultant antibody for small molecules. Rigidity is one of the basic physicochemical properties of haptens. However, few studies have investigated the effect of hapten rigidity on the strength of an immune response and overall antibody performance. Herein, we introduce three molecular descriptors that quantify hapten rigidity. By using of these descriptors, four rifamycin haptens with varied rigidity were designed. The structural and physicochemical feasibility of the designed haptens was then assessed by computational chemistry. Immunization demonstrated that the strength of induced immune responses, i.e., the titer and affinity of antiserum, was significantly increased with increased rigidity of haptens. Furthermore, molecular dynamic simulations demonstrated conformation constraint of rigid haptens contributed to the initial binding and activation of naïve B cells. Finally, a highly sensitive indirect competitive enzyme-linked immunosorbent assay was developed for detection of rifaximin, with an IC50 of 1.1 µg/L in buffer and a limit of detection of 0.2-11.3 µg/L in raw milk, river water, and soil samples. This work provides new insights into the effect of hapten rigidity on immunogenicity and offers new hapten design strategies for antibody discovery and vaccine development of small molecules.


Assuntos
Anticorpos , Rifamicinas , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Haptenos
5.
Environ Pollut ; 347: 123709, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447655

RESUMO

Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC ß-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.


Assuntos
Antagonistas de Receptores de Angiotensina , Lagos , Humanos , Lagos/microbiologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Aquicultura , China , Antibacterianos/farmacologia , Antibacterianos/análise
6.
ACS Appl Mater Interfaces ; 16(12): 14385-14404, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489475

RESUMO

Bacterial infectious diseases pose a significant global challenge. However, conventional antibacterial agents exhibit limited therapeutic effectiveness due to the emergence of drug resistance, necessitating the exploration of novel antibacterial strategies. Nanozymes have emerged as a highly promising alternative to antibiotics, owing to their particular catalytic activities against pathogens. Herein, we synthesized ultrasmall-sized MnFe2O4 nanozymes with different charges (MnFe2O4-COOH, MnFe2O4-PEG, MnFe2O4-NH2) and assessed their antibacterial capabilities. It was found that MnFe2O4 nanozymes exhibited both antibacterial and antibiofilm properties attributed to their excellent peroxidase-like activities and small sizes, enabling them to penetrate biofilms and interact with bacteria. Moreover, MnFe2O4 nanozymes effectively expedite wound healing within 12 days and facilitate tissue repair and regeneration while concurrently reducing inflammation. MnFe2O4-COOH displayed favorable antibacterial activity against Gram-positive bacteria, with 80% bacterial removal efficiency against MRSA by interacting with phosphatidylglycerol (PG) and cardiolipin (CL) of the membrane. By interacting with negatively charged bacteria surfaces, MnFe2O4-NH2 demonstrated the most significant and broad-spectrum antibacterial activity, with 95 and 85% removal efficiency against methicillin-resistant Staphylococcus aureus (MRSA) and P. aeruginosa, respectively. MnFe2O4-PEG dissipated membrane potential and reduced ATP levels in MRSA and P. aeruginosa, showing relatively broad-spectrum antibacterial activity. To conclude, MnFe2O4 nanozymes offer a promising therapeutic approach for treating wound infections.


Assuntos
Infecções Bacterianas , Compostos Férricos , Compostos de Manganês , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Bactérias
7.
Biotechnol J ; 19(3): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479991

RESUMO

Filamentous bacteriophage display technology has been employed in antibody discovery, drug screening, and protein-protein interaction study across various fields, including food safety, agricultural pollution, and environmental monitoring. Antifilamentous bacteriophage antibodies for identifying filamentous bacteriophage are playing a pivotal role in this technology. However, the existing antifilamentous bacteriophage antibodies lack sensitivity and specificity, and the antibodies preparation methods are cumbersome and hyposensitive. The major coat protein pVIII of filamentous bacteriophage has an advantage in quantification, which is benefit for detecting signal amplification but its full potential remains underutilized. In this study, the partial polypeptide CT21 of the major coat protein pVIII of filamentous bacteriophage was intercepted as the targeted immunogen or coating antigen to prepare antifilamentous bacteriophage antibodies. Six filamentous bacteriophage-specific monoclonal antibodies (mAbs) M5G8, M9A2, P6B5, P6D2, P8E4, and P10D4 were obtained. The limit of detections of the prepared six mAbs for detecting filamentous bacteriophage was 1.0 × 107  pfu mL-1 . These mAbs stayed stable under different pH, temperature, and exhibited high specificity in real application. This study not only provides a new idea for simplifying the preparation of antifilamentous bacteriophage antibodies which could apply in filamentous bacteriophage display, but it also presents a novel strategy for preparing antibodies against protein-specific epitopes with high sensitivity.


Assuntos
Inovirus , Inovirus/genética , Inovirus/metabolismo , Anticorpos Monoclonais/metabolismo , Capsídeo , Peptídeos/metabolismo , Epitopos
8.
ACS Appl Mater Interfaces ; 16(11): 13509-13524, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466024

RESUMO

Elesclomol (ES), a copper-binding ionophore, forms an ES-Cu complex with copper ions (Cu(II)). ES-Cu has been proven to induce mitochondrial oxidative stress and copper-dependent cell death (cuprotosis). However, ES-Cu is poorly water-soluble, and its delivery to various cancer cells is a challenge. Herein, we designed a d-α-tocopherol polyethylene glycol 1000 succinate/chondroitin sulfate-cholic acid (TPGS/CS-CA)-based micellar nanoparticle for delivering the ES-Cu complex to various cancer cell lines to demonstrate its efficacy as an anticancer agent. The ES-Cu nanoparticles exerted high encapsulation efficiency and excellent serum stability. The anticancer efficacy of ES-Cu nanoparticles was evaluated in various drug-sensitive cell lines (DU145, PC3, and A549) and drug-resistant cell lines (DU145TXR, PC3TXR, and A549TXR). The results showed that ES-Cu nanoparticles exerted potent anticancer activities in both drug-sensitive and drug-resistant cell lines. The Western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and molecular docking results suggested that ES-Cu is not a substrate for P glycoprotein (P-gp), which is an efflux transporter potentially causing multidrug resistance (MDR) in cancer cells. ES-Cu nanoparticles could bypass P-gp without compromising their activity, indicating that they may overcome MDR in cancer cells and provide a novel therapeutic strategy. Additionally, the extracellular matrix of ES-Cu nanoparticles-pretreated drug-resistant cells could polarize Raw 264.7 macrophages into the M1 phenotype. Therefore, our TPGS/CS-CA-based ES-Cu nanoparticles provide an effective method of delivering the ES-Cu complex, a promising strategy to overcome MDR in cancer therapy with potential immune response stimulation.


Assuntos
Antineoplásicos , Hidrazinas , Nanopartículas , Neoplasias , Cobre/química , Simulação de Acoplamento Molecular , Antineoplásicos/química , Nanopartículas/química , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
9.
Adv Healthc Mater ; : e2303839, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334034

RESUMO

Metal-organic framework (MOF)-based drug delivery nanomaterials for cancer therapy have attracted increasing attention in recent years. Here, an enhanced chemodynamic anti-tumor therapy strategy by promoting the Fenton reaction by using core-shell zeolitic imidazolate framework-8 (ZIF-8)@Fe3 O4 as a therapeutic platform is proposed. Carboxymethyl cellulose (CMC) is used as a stabilizer of Fe3 O4 , which is then decorated on the surface of ZIF-8 via the electrostatic interaction and serves as an efficient Fenton reaction trigger. Meanwhile, the pH-responsive ZIF-8 scaffold acts as a container to encapsulate the chemotherapeutic drug doxorubicin (DOX). The obtained DOX-ZIF-8@Fe3 O4 /CMC (DZFC) nanoparticles concomitantly accelerate DOX release and generate more hydroxyl radicals by targeting the lysosomes in cancer cells. In vitro and in vivo studies verify that the DZFC nanoparticles trigger glutathione peroxidase 4 (GPX4)-dependent ferroptosis via the activation of the c-Jun N-terminal kinases (JNK) signaling pathway, following to achieve the chemo/ferroptosis synergistic anti-tumor efficacy. No marked toxic effects are detected during DZFC treatment in a tumor-bearing mouse model. This composite nanoparticle remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theragnostic nanomedicines.

10.
Environ Pollut ; 345: 123474, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309422

RESUMO

Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.


Assuntos
Aflatoxina B1 , Quercetina , Animais , Humanos , Aflatoxina B1/toxicidade , Quercetina/farmacologia , Estresse Oxidativo , Fenóis/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
11.
J Clin Microbiol ; 62(2): e0012023, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284761

RESUMO

Rapid phenotypic detection assays, including Carba NP and its variants, are widely applied for clinical diagnosis of carbapenemase-producing Enterobacterales (CPE). However, these tests are based on the acidification of the pH indicator during carbapenem hydrolysis, which limits test sensitivity and speed, especially for the detection of CPE producing low-activity carbapenem (e.g., OXA-48 variants). Herein, we developed a novel rapid and sensitive CPE detection method (Carba PBP) that could measure substrate (meropenem) consumption based on penicillin-binding protein (PBP). Meropenem-specific PBP was used to develop a competitive lateral flow assay (LFA) for meropenem identification. For the detection of carbapenemase activity, meropenem concentration was optimized using a checkerboard assay. The performance of Carba PBP was evaluated and compared with that of Carba NP using a panel of 94 clinical strains characterized by whole-genome sequencing and carbapenem susceptibility test. The limit of detection of PBP-based LFA for meropenem identification was 7 ng mL-1. Using 10 ng mL-1 meropenem as the substrate, Carba PBP and Carba NP could detect 10 ng mL-1 carbapenemase within 25 min and 1,280 ng mL-1 CPE in 2 h, respectively. The sensitivity and specificity were 100% (75/75) and 100% (19/19) for Carba PBP and 85.3% (64/75) and 100% (19/19) for Carba NP, respectively. When compared with Carba NP, Carba PBP showed superior performance in detecting all the tested CPE strains (including OXA-48-like variants) within 25 min and presented two orders of magnitude higher analytical sensitivity, demonstrating potential for clinical diagnosis of CPE. IMPORTANCE This study successfully achieved the goal of carbapenemase activity detection with both high sensitivity and convenience, offering a convenient lateral flow assay for clinical diagnosis of carbapenemase-producing Enterobacterales.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Humanos , Proteínas de Ligação às Penicilinas/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Sensibilidade e Especificidade
12.
J Agric Food Chem ; 72(6): 3160-3170, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38197248

RESUMO

Flunixin (FLU) is a nonsteroidal drug that is widely used in animals, causing severe drug residues in animal-derived foods and environment. The development of antibody-based rapid immunoassay methods is of great significance for the monitoring of FLU and its metabolite 5-hydroxyflunixin (5-FLU). We prepared monoclonal antibodies (mAbs) with different recognition spectra through FLU-keyhole limpet hemocyanin conjugates as immunogen coupled with antibody screening strategies. mAb5E6 and mAb6D7 recognized FLU with high affinity, and mAb2H5 and mAb4A4 recognized FLU and 5-FLU with broad specificity. Through evaluating the recognition of these mAbs against more than 11 structural analogues and employing computational chemistry, molecular docking, and molecular dynamics methodologies, we preliminarily determined the recognition epitope and recognition mechanism of these mAbs. Finally, an indirect competitive enzyme-linked immunosorbent assay for FLU based on mAb6D7 was developed, which exhibited limits of detection as low as 0.016-0.042 µg kg -1 (L-1) in milk and muscle samples.


Assuntos
Anticorpos Monoclonais , Formação de Anticorpos , Clonixina/análogos & derivados , Animais , Simulação de Acoplamento Molecular , Imunoensaio , Ensaio de Imunoadsorção Enzimática/métodos , Especificidade de Anticorpos
13.
Compr Rev Food Sci Food Saf ; 23(1): e13264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284582

RESUMO

Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação Alimentar Estafilocócica , Humanos , Staphylococcus aureus/genética , Intoxicação Alimentar Estafilocócica/diagnóstico , Intoxicação Alimentar Estafilocócica/epidemiologia , Enterotoxinas/análise , Espectrometria de Massas
14.
ACS Infect Dis ; 10(2): 377-383, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38252850

RESUMO

Shigellosis poses an ongoing global public health threat. The presence and length of the O-antigen in lipopolysaccharide play critical roles in Shigella pathogenesis. The plasmid-mediated opt gene encodes a phosphoethanolamine (PEtN) transferase that catalyzes the addition of PEtN to the O-antigen of Shigella flexneri serotype X and Y strains, converting them into serotype Xv and Yv strains, respectively. Since 2002, these modified strains have become prevalent in China. Here we demonstrate that PEtN-mediated O-antigen modification in S. flexneri increase the severity of corneal infection in guinea pigs without any adaptive cost. This heightened virulence is associated with epithelial cell adhesion and invasion, as well as an enhanced inflammatory response of macrophage. Notably, PEtN addition allow S. flexneri to attenuate the binding of complement C3 and better resist phagocytosis, potentially contributing to the retention of S. flexneri in the host environment.


Assuntos
Etanolaminas , Antígenos O , Shigella flexneri , Animais , Cobaias , Antígenos O/genética , Antígenos O/metabolismo , Sorotipagem , Plasmídeos , Shigella flexneri/genética , Shigella flexneri/metabolismo
15.
J Agric Food Chem ; 72(4): 2059-2076, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252458

RESUMO

Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.


Assuntos
Inseticidas , Animais , Humanos , Inseticidas/metabolismo , Pirazóis/química , Imunoensaio , Água
16.
Adv Sci (Weinh) ; 11(2): e2304397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933983

RESUMO

Infections caused by Enterobacterales producing New Delhi Metallo-ß-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.


Assuntos
Antibacterianos , Carbapenêmicos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Escherichia coli , Lipossomos , Espécies Reativas de Oxigênio , Testes de Sensibilidade Microbiana
17.
Fish Shellfish Immunol ; 144: 109233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984614

RESUMO

This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 ± 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, antioxidant capacity, and immune status.


Assuntos
Antioxidantes , Bass , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Fígado/metabolismo , Triglicerídeos/metabolismo , Glicogênio/metabolismo , Glicogênio/farmacologia , Glucose/metabolismo , Zinco/farmacologia
18.
J Biol Chem ; 300(2): 105589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141758

RESUMO

Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.


Assuntos
Adipogenia , Resistência à Insulina , Receptores Purinérgicos P2Y2 , Animais , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Resistência à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Regulação para Cima , Transportador de Glucose Tipo 4/metabolismo , Transporte Proteico/genética , Lipólise/genética , Adipogenia/genética
19.
Trends Microbiol ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38008597

RESUMO

Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.

20.
Biology (Basel) ; 12(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887069

RESUMO

Seasonal water-level fluctuations can profoundly impact nutrient dynamics in aquatic ecosystems, influencing trophic structures and overall ecosystem functions. The Tian-e-Zhou Oxbow of the Yangtze River is China's first ex situ reserve and the world's first successful case of ex situ conservation for cetaceans. In order to better protect the Yangtze finless porpoise, the effects of water-level fluctuations on the trophic structure in this oxbow cannot be ignored. Therefore, we employed stable isotope analysis to investigate the changes in the trophic position, trophic niche, and contribution of basal food sources to fish during the wet and dry seasons of 2021-2022. The research results indicate that based on stable isotope analysis of the trophic levels of different dietary fish species, fish trophic levels during the wet season were generally higher than those during the dry season, but the difference was not significant (p > 0.05). Fish communities in the Tian-e-Zhou Oxbow exhibited broader trophic niche space and lower trophic redundancy during the wet season (p < 0.05), indicating a more complex and stable food web structure. In both the wet and dry seasons, fish in the oxbow primarily relied on endogenous carbon sources, but there were significant differences in the way they were utilized between the two seasons (p < 0.05). In light of the changes in the trophic structure of the fish during the wet and dry seasons, and to ensure the stable development of the Yangtze finless porpoise population, we recommend strengthening the connectivity between the Tian-e-Zhou Oxbow and the Yangtze River.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...